Svar:
FC =
Forklaring:
Se vedlagte diagram:
EF =
DE =
DC = EF
DE = FC
perimiter,
Det betyder side DE =
Siden Side DE = FC, derfor FC =
Kontrol af svaret:
Længden af en kasse er 2 centimeter mindre end dens højde. Bredden af kassen er 7 centimeter mere end dens højde. Hvis kassen havde et volumen på 180 kubikcentimeter, hvad er dens overfladeareal?
Lad højden af kassen være h cm. Så vil længden være (h-2) cm og dens bredde vil være (h + 7) cm. Så ved betingelsen af problemet (h-2) xx (h + 7) xxh = 180 => (h2-2-2h) xx (h + 7) = 180 => h ^ 3-2h ^ 2 + 7h ^ 2-14h-180 = 0 => h ^ 3 + 5h ^ 2-14h- 180 = 0 For h = 5 LHS bliver nul Hermed (h-5) er faktor LHS Så h ^ 3-5h ^ 2 + 10h ^ 2-50h + 36h-180 = 0 => h ^ 2 (h-5) + 10h (h-5) +36 (h-5) = 0 => (h-5) (h2 2 + 10h + 36) = 0 Så Højde h = 5 cm Nu Længde = (5-2) = 3 cm Bredde = 5 + 7 = 12 cm Så overfladearealet bliver 2 (3xx12 + 12xx5 + 3xx5) = 222cm ^ 2
Længden af hypotenusen i en rigtig trekant er 20 centimeter. Hvis længden af et ben er 16 centimeter, hvad er længden af det andet ben?
"12 cm" Fra "Pythagoras Theorem" "h" ^ 2 = "a" ^ 2 + "b" ^ 2 hvor "h =" Hypotussidenes længde "a =" Længden af et ben "b =" Længden af en anden ben ("20 cm") ^ 2 = ("16 cm") ^ 2 + "b" ^ 2 "b" ^ 2 = ("20 cm") ^ 2 (16 cm ") ^ 2" b " = sqrt ("20 cm") ^ 2 ("16 cm") ^ 2) "b" = sqrt ("400 cm" ^ 2 - "256 cm" ^ 2) "b" = sqrt "^ 2)" b = 12 cm "
Et ben af en rigtig trekant er 8 millimeter kortere end det længere ben og hypotenus er 8 millimeter længere end det længere ben. Hvordan finder du længderne af trekanten?
24 mm, 32 mm og 40 mm Ring x det korte ben Ring til det lange ben Ring til hypotenussen Vi får disse ligninger x = y - 8 h = y + 8. Anvend Pythagor sætningen: h ^ 2 = x ^ 2 + y ^ 2 (y + 8) ^ 2 = y ^ 2 + (y - 8) ^ 2 Udvikle: y ^ 2 + 16y + 64 = y ^ 2 + y ^ 2 - 16y + 64 y ^ 2 - 32y = 0 y (y - 32) = 0 -> y = 32 mm x = 32 - 8 = 24 mm h = 32 + 8 = 40 mm Check: (40) ^ 2 = (24) ^ 2 + 2. OKAY.