Komplekse tal er tal af formularen
(Ovenstående er en grundlæggende definition af komplekse tal. Læs videre for lidt mere om dem.)
Meget som hvordan vi angiver sættet af reelle tal som
Givet et komplekst tal
Udførelse af operationer med komplekse tal svarer til at udføre operationer på binomials. Givet to komplekse tal
Til division brugte vi det faktum at
De komplekse tal har mange nyttige applikationer og attributter, men en, der ofte opstår tidligt, er deres anvendelse i factoring-polynomier. Hvis vi begrænser os til kun reelle tal, et polynom som
Faktisk, hvis vi tillader komplekse tal, så nogen enkeltvariabel polynom af grad
Summen af tre tal er 137. Det andet tal er fire mere end to gange det første tal. Det tredje nummer er fem mindre end tre gange det første tal. Hvordan finder du de tre tal?
Tallene er 23, 50 og 64. Start med at skrive et udtryk for hvert af de tre tal. De er alle dannet fra det første tal, så lad os ringe til det første tal x. Lad det første tal være x Det andet tal er 2x +4 Det tredje tal er 3x -5 Vi får at vide at deres sum er 137. Det betyder, at når vi tilføjer dem alle sammen, bliver svaret 137. Skriv en ligning. (x) + (2x + 4) + (3x - 5) = 137 Braketterne er ikke nødvendige, de er medtaget for at få klarhed. 6x -1 = 137 6x = 138 x = 23 Så snart vi kender det første nummer, kan vi trække de to andre ud af de udtryk, vi skre
Et tal er fire gange et andet tal. Hvis det mindre tal trækkes fra det større tal, er resultatet det samme, som om det mindre tal blev forøget med 30. Hvad er de to tal?
A = 60 b = 15 Større antal = a Mindre antal = ba = 4b ab = b + 30 abb = 30 a-2b = 30 4b-2b = 30 2b = 30 b = 30/2 b = 15 a = 4xx15 a = 60
I betragtning af det komplekse nummer 5 - 3i, hvordan graverer du det komplekse nummer i det komplekse plan?
Tegn to vinkelrette akser, som du ville for en y, x graf, men i stedet for yandx bruge iandr. Et plot af (r, i) vil være så r er det reelle tal, og jeg er det imaginære tal. Så tag et punkt på (5, -3) på r, i grafen.