Svar:
I polære koordinater, r = a og
Forklaring:
Den polære ligning af en fuld cirkel, der henvises til dens center som pol, er r = a. Sortimentet for
For halvcirkel, rækkevidden for
Så svaret er
r = a og
Svar:
I rektangulære koordinater kan ligningen af den øverste halvdel af en cirkel skrives:
#y = sqrt (r ^ 2 - (x-h) ^ 2) + k #
Forklaring:
Ligningen af en fuld cirkel med center
# (x-h) ^ 2 + (y-k) ^ 2 = r ^ 2 #
Derfor kan den øvre halvdel af en cirkel udtrykkes som:
#y = sqrt (r ^ 2 - (x-h) ^ 2) + k #
hvor
Vi har en cirkel med et indskrevet firkant med en indskrevet cirkel med en indskrevet ligesidet trekant. Diameteren af den ydre cirkel er 8 fod. Trianglen materialet koster $ 104,95 en kvadratmeter. Hvad koster det trekantede center?
Omkostningerne ved et trekantet center er $ 1090,67 AC = 8 som en given diameter af en cirkel. Derfor fra den pythagoriske sætning til højre isosceles trekant Delta ABC, AB = 8 / sqrt (2) Så siden GE = 1/2 AB, GE = 4 / sqrt (2) Det er klart, at trekant Delta GHI er ensidig. Punkt E er et center af en cirkel, der omkredser Delta GHI og som sådan er et skæringspunkt mellem medianer, højder og vinkel bisektorer i denne trekant. Det er kendt, at et snitpunkt mellem medianer deler disse medianer i forholdet 2: 1 (for at se Unizor og følg linkene Geometri - Parallellinjer - Mini Theorems 2 - Te
Du får en cirkel B, hvis center er (4, 3) og et punkt på (10, 3) og en anden cirkel C, hvis center er (-3, -5) og et punkt på denne cirkel er (1, -5) . Hvad er forholdet mellem cirkel B og cirkel C?
3: 2 "eller" 3/2 ", vi har brug for til at beregne radiuserne af cirklerne og sammenligne" "radius er afstanden fra midten til punktet" "på cirklen" "centrum af B" = (4,3 ) "og punktet er" = (10,3) ", da y-koordinaterne er begge 3, så er radius forskellen i x-koordinaterne" rArr "radius af B" = 10-4 = 6 "center af C "= (- 3, -5)" og punkt er "= (1, -5)" y-koordinater er begge - 5 "rArr" radius af C "= 1 - (-3) = 4" forholdet " = (farve (rød) "radius_B") / (farve (rø
Cirkel A har en radius på 2 og et center på (6, 5). Cirkel B har en radius på 3 og et center på (2, 4). Hvis cirkel B oversættes med <1, 1>, overlapper den cirkel A? Hvis ikke, hvad er den mindste afstand mellem point på begge cirkler?
"overlapper hinanden"> "hvad vi skal gøre her er at sammenligne afstanden mellem døgnene og summen af radiuserne" • "hvis summen af radii"> d "så cirklerne overlapper hinanden" • "hvis summen af radi "<d" og derefter ikke overlappe "" før beregningen d "" kræver vi at finde det nye center "" af B efter den givne oversættelse "" under oversættelsen "<1,1> (2,4) til (2 + 1, 4 + 1) til (3,5) larrcolor (rød) "nyt centrum af B" "for at beregne d bruger"