Trapezons areal er 56 enheder². Den øverste længde er parallel med bundlængden. Den øverste længde er 10 enheder og bundlængden er 6 enheder. Hvordan ville jeg finde højden?
Område med trapezoid = 1/2 (b_1 + b_2) xxh Brug af områdeformlen og de værdier, der er angivet i problemet ... 56 = 1/2 (10 + 6) xxh Nu løses h ... h = 7 enheder håb, der hjalp
Antallet af et sidste år er divideret med 2, og resultatet er vendt op og ned divideret med 3, derefter venstre til højre op og divideret med 2. Derefter vendes cifrene i resultatet for at gøre 13. Hvad er det sidste år?
Farve (rød) (1962) Her er de beskrevne trin: {: ("år", farve (hvid) ("xxx"), rarr ["resultat" 0]), (["resultat" 0] div 2 ,, rarr ["resultat" 2]), (["resultat" 2] "divideret med" 3, rarr ["resultat "3"), (("venstre højre op") ,, ("ingen ændring")), (["resultat" 3] div 2, rarr ["resultat" 4]), 4] "cifret tilbage" ,, rarr ["resultat" 5] = 13):} Arbejde baglæns: farve (hvid) ("XX") ["resultat" 4] = 31 farve (hvid) "resultat" 3] =
Rhombus WXYZ med hjørner W (-4, 3), X (-1 1), Y (2,3) og Z (-1, 5) oversat 2 enheder højre og 5 enheder ned. Hvad er de nye koordinater?
(-2, -2), (1, -4), (4, -2), (1,0)> "en oversættelse bevæger de givne punkter i planet" 2 "enheder højre" rarrcolor 2 "5" enheder ned "darrfar (blå)" negativ 5 "" under oversættelsen "(2), (- 5)) •" et punkt "(x, y) til (x + 2, y-5) W (-4,3) til W '(- 4 + 2,3-5) til W' (-2,2) X (-1,1) til X '(- 1 + 2,1-5) til X' 1, -4) Y (2,3) toY '(2 + 2,3-5) til Y' (4, -2) Z (-1,5) til Z '(- 1 + 2,5-5) til Z '(1,0)