Svar:
Brug gradient- og étpunktsligningen og omarrangere til formularen
Forklaring:
Ligningens ligning kan findes, hvis lutningen eller "hældningen" og et punkt på linjen er kendt, kan findes med ligningen:
Substituering i værdierne for din sag får vi:
Rensning af de to negativer og udvidelse af beslagene på højre side får vi:
Nu tager vi væk fra begge sider for at få det i form
Dette resulterer i ligningen og svar på dit spørgsmål:
En linje passerer gennem (4, 3) og (2, 5). En anden linje går gennem (5, 6). Hvad er et andet punkt, at den anden linje kan passere, hvis den er parallel med den første linje?
(3,8) Så vi må først finde retningsvektoren mellem (2,5) og (4,3) (2,5) - (4,3) = (- 2,2) Vi ved, at en vektorligning består af en positionsvektor og en retningsvektor. Vi ved, at (5,6) er en position på vektor ligningen, så vi kan bruge det som vores positionsvektor, og vi ved, at det er parallel den anden linje, så vi kan bruge den retningsvektor (x, y) = (5, 6) + s (-2,2) For at finde et andet punkt på linjen skal du bare erstatte et tal i s fra 0, så vi kan vælge 1 (x, y) = (5,6) +1 (-2,2) = (3,8) Så (3,8) er et andet andet punkt.
Bevis at givet en linje og ikke pege på den linje, er der netop en linje, der passerer gennem det punkt vinkelret gennem den linje? Du kan gøre dette matematisk eller gennem konstruktion (de gamle grækere gjorde)?
Se nedenunder. Lad os antage, at den angivne linje er AB, og punktet er P, som ikke er på AB. Nu, lad os antage, vi har tegnet en vinkelret PO på AB. Vi må bevise, at denne PO er den eneste linje, der passerer gennem P, der er vinkelret på AB. Nu skal vi bruge en konstruktion. Lad os konstruere en anden vinkelret PC på AB fra punkt P. Nu beviset. Vi har, OP vinkelret AB [Jeg kan ikke bruge det vinkelrette tegn, hvordan annyoing] Og også PC vinkelret AB. Så, OP || PC. [Begge er perpendicularer på samme linje.] Nu har både OP og PC punkt P fælles og de er parallelle. Det bety
Skriv punkt-skråning form af ligningen med den givne hældning, der passerer gennem det angivne punkt. A.) linjen med hældning -4 passerer gennem (5,4). og også B.) linjen med hældning 2 passerer gennem (-1, -2). Vær venlig at hjælpe, dette forvirrende?
Y-4 = -4 (x-5) "og" y + 2 = 2 (x + 1)> "ligningen af en linje i" farve (blå) "punkt-skråning form" er. • farve (hvid) (x) y-y_1 = m (x-x_1) "hvor m er hældningen og" (x_1, y_1) "et punkt på linjen" (A) "givet" m = -4 " "(x_1, y_1) = (5,4)" erstatter disse værdier i ligningen giver "y-4 = -4 (x-5) larrcolor (blå)" i punkt-skråning form "(B)" givet "m = 2 "og" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor i punkt-skråning form "